An Engineered Viral Protease Exhibiting Substrate Specificity for a Polyglutamine Stretch Prevents Polyglutamine-Induced Neuronal Cell Death
نویسندگان
چکیده
BACKGROUND Polyglutamine (polyQ)-induced protein aggregation is the hallmark of a group of neurodegenerative diseases, including Huntington's disease. We hypothesized that a protease that could cleave polyQ stretches would intervene in the initial events leading to pathogenesis in these diseases. To prove this concept, we aimed to generate a protease possessing substrate specificity for polyQ stretches. METHODOLOGY/PRINCIPAL FINDINGS Hepatitis A virus (HAV) 3C protease (3CP) was subjected to engineering using a yeast-based method known as the Genetic Assay for Site-specific Proteolysis (GASP). Analysis of the substrate specificity revealed that 3CP can cleave substrates containing glutamine at positions P5, P4, P3, P1, P2', or P3', but not substrates containing glutamine at the P2 or P1' positions. To accommodate glutamine at P2 and P1', key residues comprising the active sites of the S2 or S1' pockets were separately randomized and screened. The resulting sets of variants were combined by shuffling and further subjected to two rounds of randomization and screening using a substrate containing glutamines from positions P5 through P3'. One of the selected variants (Var26) reduced the expression level and aggregation of a huntingtin exon1-GFP fusion protein containing a pathogenic polyQ stretch (HttEx1(97Q)-GFP) in the neuroblastoma cell line SH-SY5Y. Var26 also prevented cell death and caspase 3 activation induced by HttEx1(97Q)-GFP. These protective effects of Var26 were proteolytic activity-dependent. CONCLUSIONS/SIGNIFICANCE These data provide a proof-of-concept that proteolytic cleavage of polyQ stretches could be an effective modality for the treatment of polyQ diseases.
منابع مشابه
Cell cycle arrest enhances the in vitro cellular toxicity of the truncated Machado-Joseph disease gene product with an expanded polyglutamine stretch.
Machado-Joseph disease (MJD) is an inherited neurodegenerative disorder caused by the expansion of the polyglutamine stretch in the MJD gene-encoded protein, ataxin-3. Using a series of deletion constructs expressing ataxin-3 fragments with expanded polyglutamine stretches, we observed aggregate formation and cell death in cultured BHK-21 cells. The cytotoxic effect of N-terminal-truncated atax...
متن کاملAccumulation of aberrant ubiquitin induces aggregate formation and cell death in polyglutamine diseases.
Polyglutamine diseases are characterized by neuronal intranuclear inclusions (NIIs) of expanded polyglutamine proteins, indicating the failure of protein degradation. UBB(+1), an aberrant form of ubiquitin, is a substrate and inhibitor of the proteasome, and was previously reported to accumulate in Alzheimer disease and other tauopathies. Here, we show accumulation of UBB(+1) in the NIIs and th...
متن کاملPolyglutamine-Expanded Human Huntingtin Transgenes Induce Degeneration of Drosophila Photoreceptor Neurons
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder. Disease alleles contain a trinucleotide repeat expansion of variable length, which encodes polyglutamine tracts near the amino terminus of the HD protein, huntingtin. Polyglutamine-expanded huntingtin, but not normal huntingtin, forms nuclear inclusions. We describe a Drosophila model for HD. Amino-terminal fragments...
متن کاملDdh188 1803..1813
Polyglutamine diseases are characterized by neuronal intranuclear inclusions (NIIs) of expanded polyglutamine proteins, indicating the failure of protein degradation. UBB, an aberrant form of ubiquitin, is a substrate and inhibitor of the proteasome, and was previously reported to accumulate in Alzheimer disease and other tauopathies. Here, we show accumulation of UBB in the NIIs and the cytopl...
متن کاملStem cell models of polyglutamine diseases and their use in cell-based therapies
Polyglutamine diseases are fatal neurological disorders that affect the central nervous system. They are caused by mutations in disease genes that contain CAG trinucleotide expansions in their coding regions. These mutations are translated into expanded glutamine chains in pathological proteins. Mutant proteins induce cytotoxicity, form intranuclear aggregates and cause neuronal cell death in s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2011